Особенности национального часть 100

Особенности национального часть 100

Людвиг Больцман и энтропия

Больцман был невысоким здоровяком с бочкообразной грудью и громадной спутанной бородой. Однако за внушительной и даже пугающей внешностью скрывалась ранимая душа; а ран, защищая научные идеи, ему приходилось получать много. Хотя к XIX в. принципы ньютоновской физики уже прочно утвердились в науке, Больцман понимал, что никто еще не пытался применить известные законы к противоречивой концепции атомного строения вещества — концепции, которую тогда принимали далеко не все ведущие ученые. (Мы иногда забываем, что всего сто лет назад многие ученые упрямо верили, что атом вовсе не реальный объект, а всего лишь хитроумная уловка. Атомы настолько малы, утверждали они, что, скорее всего, их вовсе не существует.)
Ньютон показал, что движение любых объектов определяют механические силы, а не духи и не желания людей. Больцман воспользовался этим и элегантно вывел многие законы для газов при помощи простого предположения: он считал, что газы состоят из крошечных атомов, которые движутся подобно бильярдным шарам и подчиняются ньютоновым законам сил. Для Больцмана комната, наполненная газом, была подобна коробке с триллионами крошечных стальных шариков, каждый из которых отскакивал от стенок коробки и от других шариков согласно ньютоновым законам движения. Больцман (и независимо от него Джеймс Клерк Максвелл) сделал величайший научный прорыв, когда математически показал, как из этого простого предположения можно вывести поразительные новые законы. Тем самым он положил начало новому направлению в физике — статистической механике.
Внезапно оказалось, что при помощи нескольких базовых принципов можно объяснить многие свойства вещества. Поскольку законы Ньютона требовали, чтобы энергия сохранялась даже в приложении к атомам, каждое столкновение между атомами должно было проходить с сохранением общей энергии; это, в свою очередь, означало, что для газа в комнате, со всеми все его триллионами атомов, энергия также сохранялась. Получалось, что закон сохранения энергии теперь можно не только получить экспериментальным путем, но и теоретически вывести из базовых принципов а именно из ньютоновского движения атомов.
Но в XIX в. само существование атомов все еще было под сомнением; даже видные ученые (к примеру, философ Эрнст Мах) не считали зазорным оспаривать и нередко даже высмеивать теорию атомного строения вещества. Больцман, человек ранимый и склонный к депрессии, вдруг обнаружил себя этаким общим громоотводом, главной мишенью для атак, нередко очень злых, всех противников атомной теории. Для них все, что нельзя измерить, — в том числе и атомы — просто не существовало. К унижению Больцмана добавлялось еще и то, что редактор видного немецкого физического журнала отвергал многие его статьи; редактор этот настаивал, что атомы и молекулы представляют собой скорее чрезвычайно удобный теоретический инструмент, чем реальные существующие в природе объекты.
Не выдержав всех этих нападок, в том числе и сугубо личных, в 1906 г. Больцман повесился, выбрав время, когда его жена с ребенком были на море. Очень печально, что этот выдающийся человек так и не понял, что год назад дерзкий молодой физик по имени Альберт Эйнштейн совершил невозможное: он написал первую статью, наглядно доказывающую существование атомов.

Суммарная энтропия всегда возрастает

Труды Больцмана и других физиков помогли прояснить природу вечного двигателя и даже разбить все существующие их схемы на два типа. Вечный двигатель первого типа нарушает первый закон термодинамики; это означает, что он попросту производит больше энергии, чем потребляет. В любом из подобных вечных двигателей физикам при тщательном исследовании физики удавалось обнаружить скрытые внешние источники энергии. Это могло быть как сознательным мошенничеством, так и результатом ошибки изобретателя.
Вечный двигатель второго типа — штука более сложная. В этих машинах соблюдается первый закон термодинамики, т. е. сохраняется энергия, но нарушается второй закон. Теоретически в вечном двигателе второго типа нет потерь тепла, поэтому он эффективен на 100%. Но второй закон термодинамики говорит, что такая машина невозможна — потери тепла должны быть обязательно, а количество беспорядка во Вселенной, иначе энтропия, всегда возрастает. Какой бы эффективной ни была машина, часть тепла непременно теряется, повышая таким образом энтропию Вселенной.
Тот факт, что суммарная энтропия всегда возрастает, лежит в самом сердце человеческой истории, да и матери-природы тоже. В сущности второй закон говорит нам, что ломать гораздо проще, чем строить. Иногда то, что создавалось тысячи лет, как, например, великая империя ацтеков в Мексике, может быть разрушено за несколько месяцев; именно так произошло, когда потрепанная банда испанских конкистадоров с лошадьми и огнестрельным оружием потрясла основы империи и полностью разрушила сложный механизм.
Отмечая глубинную природу второго закона термодинамики, астроном Артур Эддингтон однажды сказал: ?Мне кажется, что закон возрастания энтропии стоит выше других законов природы.,, если оказывается, что твоя новая теория противоречит второму закону термодинамики, оставь надежду; перед этим законом остается только униженно пасть?.
Даже сегодня предприимчивые инженеры (и талантливые шарлатаны) продолжают время от времени изобретать вечный двигатель. Не так давно Wall Street Journal попросил меня высказать свое мнение о работе одного изобретателя, который успел уже убедить инвесторов вложить в изобретенную им машину миллионы долларов. В крупных финансовых газетах появились восторженные статьи; журналисты, ничего не смыслящие в науке, с придыханием писали о том, что это изобретение способно изменить мир (и, разумеется, принести попутно инвесторам сказочную, немыслимую прибыль). ?Гений или безумец?? — кричали заголовки.
Инвесторы радостно спешили вложить деньги в новую машину— а она, между прочим, нарушала базовые законы физики и химии, изучаемые в средней школе. (Меня шокировало даже не то, что кто-то пытался обмануть неосторожных и оставить их с носом — подобными вещами люди занимались испокон веков. Удивительно другое: как легко удалось этому изобретателю обмануть богатых инвесторов и как плохо большинство людей понимает элементарную физику.) Я ответил журналу известной пословицей: ?Дурак легко расстается с деньгами? и любимым афоризмом Финеаса Барнума: ?Каждую минуту на Земле рождается простофиля?. Наверное, не стоит удивляться тому, что Financial Times, Economist и Wall Street Journal дружно напечатали большие редакционные статьи о разных изобретателях и их замечательных вечных двигателях.

Три закона термодинамики и симметрия

Но все вышесказанное рождает и более глубокий вопрос: а почему, собственно, должны работать эти непогрешимые законы термодинамики? Эта загадка занимала ученых с того самого момента, когда эти законы были впервые сформулированы. Не исключено, что, зная ответ на этот вопрос, мы могли бы отыскать в законах термодинамики лазейки и сделать новые потрясающие открытия и изобретения, способные перевернуть мир.
В старших классах школы я испытал настоящее потрясение, когда узнал наконец истинную причину сохранения энергии. Оказывается, один из фундаментальных принципов физики (открытый математиком Эмми Нётер в 1918 г.) гласит: если система обладает симметрией, в ней обязательно действует какой-нибудь закон сохранения. Из предположения о том, что законы Вселенной не меняются со временем, следует поразительный результат: энергия в системе должна сохраняться. (Далее, если законы природы остаются неизменными, в каком бы направлении вы ни двигались, то сохраняется не только энергия, но и импульс в любом направлении. А если законы природы остаются неизменными при вращении, то сохраняется еще и угловой момент.)
Это буквально ошеломило меня. Я вдруг понял, что, анализируя звездный свет, дошедший до нас от далеких галактик с самой окраины видимой Вселенной, мы убеждаемся, что спектр этого света ничем не отличается от спектров, которые можно обнаружить на Земле. В свете, рожденном за миллиарды лет до появления и Земли, и Солнца, мы наблюдаем те же неоспоримые спектральные ?отпечатки? водорода, гелия, углерода, неона и т. п., которые видим сегодня и на Земле. Другими словами, основные законы физики не изменились за миллиарды лет и одинаковы по всей Вселенной, до самых ее границ.
Я понял, что теорема Нётер означает как минимум, что энергия, вероятно, будет сохраняться если не вечно, то не один миллиард лет. Насколько нам в данный момент известно, ни один из фундаментальных законов физики со временем не изменялся, и потому закон сохранения энергии работает.
Теорема Нётер имеет для современной физики величайшее значение. Какую бы новую теорию ни придумали физики и о чем бы ни шла в ней речь — о происхождении Вселенной, о взаимодействиях кварков и элементарных частиц, об антивеществе, — мы обязательно начинаем с рассмотрения симметрии, которой подчиняется система. Вообще говоря, в настоящее время симметрия считается ведущим фундаментальным принципом в разработке любой теории. В прошлом на симметрию смотрели как на побочный результат теории — приятно, но не имеет большого значения. Сегодня мы понимаем, что симметрия — очень существенная и даже определяющая черта любой теории. Разрабатывая что-то новое, мы, физики, начинаем с симметрии, а затем уже выстраиваем вокруг нее теорию.
(Печально, но Эмми Нётер, как до нее Больцману, приходилось сражаться за признание не на жизнь, а на смерть. Ни один из ведущих институтов не готов был принять на постоянную работу женщину-математика. Наставник Нётер, великий математик Давид Гильберт, разъяренный очередной неудачной попыткой устроить Нётер на преподавательскую должность, воскликнул: ?В конце концов, мы кто, университет или общество любителей бани??)
В связи с этим возникает тревожный вопрос. Если энергия сохраняется только потому, что законы физики не меняются со временем, то не может ли быть, что в каких-нибудь необычных, редких обстоятельствах эта симметрия все-таки нарушается? Если в неожиданных и экзотических местах симметрия наших законов действительно нарушается, то и закон сохранения энергии в космических масштабах может нарушаться.
Подобная ситуация может возникнуть, в частности, если законы физики изменяются во времени или с расстоянием. (В романе Азимова ?Сами боги? симметрия нарушается из-за пространственной дыры, соединившей нашу Вселенную с параллельной вселенной. В окрестностях этой дыры законы физики изменяются — и возникает возможность нарушения законов термодинамики. Точно также, если существуют пространственные дыры, т. е. кротовые норы, может нарушаться и закон сохранения энергии.)
Кроме того, в настоящее время горячо обсуждается вопрос, может ли энергия появляться из ничего; этот момент тоже может оказаться удобной лазейкой.

Энергия из вакуума?

Вот мучительный вопрос: можно ли извлечь энергию из пустоты? Физики лишь недавно поняли, что на самом деле ?пустота? вакуума вовсе не пуста, в ней кипит неиссякаемая активность.
Одним из активных сторонников и пропагандистов этой идеи был эксцентричный гений XX в. Никола Тесла — достойный соперник Томаса Эдисона. Кроме того, он был одним из сторонников ?энергии из пустоты?, т.е. идеи о том, что вакуум может содержать в себе неимоверные количества энергии. Если это правда, то вакуум станет олицетворением ?бесплатного сыра? — ?волшебным горшочком?, способным извлекать энергию в любых количествах буквально ниоткуда. Вакуум, который раньше считали пустым и лишенным всякого вещества, окажется бездонным кладезем энергии.
Тесла родился в маленьком городке на территории нынешней Сербии и в 1884 г. прибыл в Соединенные Штаты без единого цента в кармане. Вскоре он стал помощником Томаса Эдисона — помощником настолько блестящим, что превратился в соперника. Противостояние этих двух знаменитостей историки окрестили ?войной токов?. Эдисон считал, что мир можно электрифицировать при помощи машин постоянного тока, тогда как Тесла первым ввел переменный ток и успешно продемонстрировал, что его методы гораздо эффективнее методов Эдисона и допускают меньшие потери при передаче электричества на большее расстояние. Сегодня почти вся планета снабжается электричеством на базе патентов Теслы, а не Эдисона.
Всего у Теслы насчитывается больше 700 изобретений и патентов, некоторые из которых являются важнейшими историческими вехами современного электричества. Историки считают вполне вероятным, что Тесла придумал радио раньше, чем это сделал Гульельмо Маркони, официально признанный изобретателем радио, и работал с рентгеновскими лучами еще до их официального открытия Вильгельмом Рентгеном. (И Маркони, и Рентген позже были удостоены Нобелевской премии за изобретения, которые Тесла, вероятно, сделал на несколько лет раньше.)
Тесла также считал, что можно извлекать из вакуума энергию в неограниченных количествах, но, к сожалению, не привел в своих записках доказательства этого утверждения. На первый взгляд кажется, что ?энергия пустоты? (или энергия, которая содержится в вакууме) нарушает первый закон термодинамики. Нет никаких сомнений в том, что энергия вакуума нарушает законы ньютоновой механики, но недавно вопрос о ней вновь возник на научном горизонте, но уже с совершенно нового направления.
Проанализировав данные со спутников, которые в настоящее время находятся на орбите, в частности со спутника WMAP, ученые пришли к поразительному выводу: не меньше 73% Вселенной состоит из темной энергии — энергии чистого вакуума. Это означает, что вакуум, разделяющий галактики, является одновременно величайшим резервуаром энергии Вселенной. (Эта темная энергия настолько колоссальна, что отталкивает галактики прочь друг от друга и может со временем разорвать Вселенную на части.)
Темная энергия наполняет всю Вселенную, все ее уголки, в том числе наши дома — и наши тела тоже. Количество темной энергии в космосе поистине астрономично и превосходит энергию всех звезд и галактик, вместе взятых. Можно также рассчитать количество темной энергии на Земле; окажется, что ее очень немного—слишком мало, чтобы подпитывать вечный двигатель. Тесла был прав: темная энергия существует; тем не менее в отношении количества такой энергии на Земле он ошибался.

А может быть, нет?

Один из самых неприятных пробелов в современной физике состоит в том, что никто не может теоретически рассчитать то количество темной энергии, которое мы измеряем при помощи спутников. Если проводить расчет с позиций современной атомарной физики, то полученное число разойдется с экспериментальным результатом на 120 порядков! Это единица со 120 нулями! Без сомнения, это самое значительное расхождение между теорией и экспериментом за всю историю физики.
Суть в том, что никто не знает, как посчитать ?энергию пустоты?. Это один из важнейших вопросов физики (ведь со временем ответ на него определит судьбу Вселенной!), но пока мы не представляем, как можно рассчитать количество этой энергии. Ни одна из теорий не объясняет темной энергии, хотя экспериментальные доказательства ее существования очевидны.
Итак, в вакууме действительно заключена энергия, как и подозревал Тесла. Но плотность этой энергии, скорее всего, слишком мала, чтобы ее можно было извлекать и использовать. В огромных межгалактических пространствах полно темной энергии, а вот на Земле ее умещается только чуть-чуть. Но самое неприятное, что никто не знает, откуда взялась эта энергия и как можно рассчитать ее количество.
Я убежден, что закон сохранения энергии обусловлен глубинными космологическими причинами. Любое нарушение этого закона непременно означало бы серьезные сдвиги в наших представлениях об эволюции Вселенной. И загадка темной энергии заставляет физиков предпринимать новые и новые попытки решить этот вопрос.
Поскольку создание настоящего вечного двигателя может потребовать пересмотра фундаментальных законов физики на космологическом уровне, я склонен отнести вечный двигатель к III классу невозможности; это означает, на мой взгляд, что либо такой двигатель действительно невозможен, либо нам придется полностью пересмотреть наши представления о фундаментальной физике в космологическом масштабе — только в этом случае такая машина может получить право на существование. Что же касается темной энергии, то она остается одной из величайших незаконченных глав современной науки.
Можем ли мы видеть будущее?

Можно ли доказать при помощи строгих научных экспериментов, что некоторые люди способны видеть будущее? Мы видели, что путешествия во времени в принципе не противоречат законам природы, но доступны лишь высокоразвитым цивилизациям III типа. Но может быть, предвидение доступно нам и сегодня на Земле?
Сложные и тщательно организованные тесты, проведенные в Центре Райна, вроде бы дают основания полагать, что некоторые люди действительно могут предвидеть будущее; а именно могут называть карты раньше, чем они будут открыты. Но многочисленные повторные эксперименты показали, что эффект этот очень слаб и часто вообще исчезает, если результат пытаются повторить другие исследователи.
На самом деле предвидение будущего трудно примирить с современной наукой, потому что в этом случае нарушается причинно-следственная связь, или закон причины и следствия. Причина должна предшествовать следствию, а не наоборот. Причинно-следственная связь встроена во все законы физики, которые удалось обнаружить до сих пор, и от ее нарушения рухнет все здание современной физики. Ньютонова механика прочно базируется на законе о причинно-следственных связях, а законы Ньютона настолько всеобъемлющи, что, зная точные координаты и скорости всех молекул во Вселенной, можно было бы рассчитать и будущее движение этих атомов. Таким образом, будущее можно рассчитать. В принципе ньютонова механика утверждает, что, имея в своем распоряжении достаточно мощный компьютер, можно вычислить все будущие события. По Ньютону, Вселенная похожа на гигантские часы, которые Бог завел в начале времен и которые с тех пор идут по Его законам. В теории Ньютона нет места предвидению.

Назад во времени

Однако если рассмотреть теорию Максвелла, сценарий окажется гораздо более сложным. При решении максвелловых уравнений для света мы получаем не одно, а два решения: не только ?запаздывающую? волну, которая представляет собой обычное движение света из одной точки в другую, но еще и ?опережающую? волну, которая представляет собой луч света, уходящий назад во времени. Это продвинутое решение выходит из будущего и приходит в прошлое!
В течение сотни лет любой инженер, встречая это ?опережающее? решение, уходящее назад во времени, просто отбрасывал его как чисто математическую диковинку. Поскольку обычные волны Максвелла чрезвычайно точно предсказывали поведение радиоволн всех диапазонов, практики отбрасывали опережающее решение как ненужное и забывали о нем. Обычная волна была так хороша, красива и успешна, что инженеры
просто игнорировали ее безобразную сестру-близнеца: от добра добра не ищут.
Но физикам опережающая волна все эти сто лет не давала спокойно спать. Уравнения Максвелла — один из столпов современности, поэтому к любому их решению следует отнестись очень серьезно, даже если для этого потребуется принять существование волн из будущего. Полностью игнорировать их было совершенно невозможно. Почему природа дала нам такое странное, причудливое решение — да еще на самом базовом уровне? Что это — жестокая шутка, или в этом есть какой-то глубокий смысл?
Интерес к опережающим волнам проявили и мистики; появились даже рассуждения о том, что это могут оказаться послания из будущего. Может быть, если как-нибудь обуздать эти волны, мы могли бы посылать сообщения в прошлое и сообщать предыдущим поколениям о грядущих событиях. К примеру, можно было бы посоветовать нашим прадедушкам и прабабушкам в 1929 г. продать все акции, не дожидаясь Черного четверга. Конечно, опережающие волны не позволили бы нам лично посещать прошлое — это все же не машина времени, — зато помогли бы организовать отправку в прошлое писем и сообщений с предупреждениями о ключевых событиях, которые еще не произошли.
Опережающие волны оставались загадкой, пока за их изучение не взялся Ричард Фейнман, которого всегда занимала идея вернуться в прошлое. После участия в Манхэттенском проекте, где была создана первая атомная бомба, Фейнман покинул Лос-Аламос и уехал в Принстонскии университет работать под началом Джона Уилера. Анализируя первые работы Дирака по электрону, Фейнман обнаружил нечто очень странное. Если изменить направление времени в уравнении Дирака на обратное и одновременно изменить знак заряда электрона, то уравнение останется прежним. Другими словами, у Фейнмана получилось, что электрон, движущийся назад во времени, — это то же самое, что позитрон, который движется вперед во времени! В обычных обстоятельствах зрелый, сложившийся физик мог бы отбросить эту интерпретацию, посчитав ее просто фокусом, математической уловкой, не имеющей ни значения, ни физического смысла. Вообще, на первый взгляд кажется, что движение назад во времени лишено всякого смысла, но уравнения Дирака в этом отношении совершенно ясны. Другими словами, Фейнману удалось обнаружить причину, по которой природа разрешает существование этих обратных во времени решений: они представляют движение антиматерии. Будь Фейнман более опытным физиком, он, вполне возможно, выбросил бы это решение в корзину. Но будучи всего лишь выпускником, он решил пойти на поводу собственного любопытства и исследовать вопрос дальше.
Продолжая копаться в этом загадочном решении, молодой Фейнман заметил нечто еще более странное. Обычно если электрон и позитрон сталкиваются, они оба аннигилируют с одновременным образованием гамма-кванта. Он нарисовал схему происходящего на листе: два объекта сталкиваются и исчезают, а вместо них возникает всплеск энергии.
С другой стороны, если изменить заряд позитрона на противоположный, он превратится в обычный электрон, движущийся назад во времени. Тогда описанную диаграмму можно будет нарисовать заново — только ось времени окажется направлена в другую сторону. Вообще, все выглядит так, как будто электрон двигался вперед во времени, а затем неожиданно решил изменить направление. Он резко развернулся во времени и направился обратно, высвободив в момент разворота некоторое количество энергии. Другими словами, получилось, что это один и тот же электрон, а процесс аннигиляции электрона и позитрона — это просто момент разворота его во времени!
Таким образом, Фейнману удалось раскрыть тайну антивещества: это обычное вещество, движущееся назад во времени.
Простое наблюдение сразу же объяснило тот загадочный факт, что у каждой частицы непременно есть партнер-античастица: это потому, что все частицы способны двигаться назад во времени и при этом притворяться антивеществом. (Такая интерпретация эквивалентна уже упоминавшемуся ?морю Дирака?, но она проще, и на сегодняшний день именно она является общепринятой.)
Теперь представим, что у нас есть кусок антивещества, и мы сталкиваем его с обычным веществом, порождая сильнейший взрыв. В этот момент аннигилируют между собой триллионы электронов и триллионы позитронов. Но если мы поменяем направление стрелочки для позитрона и превратим его таким образом в электрон, движущийся назад во времени, то получится, что весь наш взрыв — это один и тот же электрон, который выписывает зигзаги и мечется вперед-назад во времени триллионы раз подряд.
Из всего этого можно было сделать и еще один любопытный вывод: в нашем куске вещества должен быть всего один электрон. Один и тот же электрон носился вперед и назад, выписывая во времени бесконечные зигзаги. Каждый раз, разворачиваясь во времени, он превращался в позитрон; но стоило ему развернуться обратно во времени, как он снова оборачивался обычным электроном.
(Общаясь со своим научным руководителем Джоном Уилером, Фейнман рассуждал, что во Вселенной, возможно, вообще всего один электрон, который носится туда-сюда во времени. Представьте себе, что из хаоса Большого взрыва родился один-единственный электрон. Когда-нибудь, через несколько триллионов лет, этот электрон доживет до катастрофы и гибели Вселенной; тогда он развернется и направится назад, к Большому взрыву, где еще раз поменяет направление движения во времени. Можно предположить, что этот электрон постоянно путешествует туда-сюда, от Большого взрыва до Судного дня. А наша Вселенная двадцать первого века—это просто временной срез путешествий этого электрона; мы видим одновременно триллионы электронов и позитронов, т.е. видимую Вселенную. Конечно, эта теория может показаться странной, но она объяснила бы один любопытный факт квантовой теории: почему все электроны одинаковы. В физике невозможно различить электроны. Невозможно считать один из электронов зеленым, а другому, скажем, дать имя Джонни. У электронов нет индивидуальности. Невозможно ?пометить? электрон, как ученые иногда помечают диких животных, чтобы их проще было отслеживать и изучать. Может быть, причина как раз в том, что во всей Вселенной есть один-единственный электрон, который просто носится туда-сюда во времени.)
Но если антивещество представляет собой обычное вещество, движущееся назад во времени, то нельзя ли с его помощью послать сообщение в прошлое? Может быть, можно послать сегодняшний номер Wall Street Journal в прошлое самому себе и как следует нажиться на биржевых спекуляциях?
Ответ очень прост: нет, нельзя.
Если мы рассматриваем антивещество как еще одну экзотическую форму вещества, а затем проводим с ним эксперименты, то в этом нет никакого нарушения причинно-следственной связи. Причина и следствие остаются на месте. Но если мы меняем направление оси времени для позитрона и отправляем его в прошлое, то это ничего не значит; мы всего лишь выполняем некую математическую операцию. Физика остается прежней, и в реальности ничего не меняется. Все экспериментальные результаты остаются на месте. Именно поэтому мы имеем полное право считать, что электрон бегает туда-обратно во времени. Но каждый раз, когда он движется в обратном направлении, он просто заполняет собой прошлое. Так что, похоже, для существования последовательной квантовой теории действительно необходимы опережающие решения из будущего, но по большому счету они не нарушают принципа причинности. (На самом деле все наоборот: если бы не было этих странных опережающих волн, принцип причинности в квантовой теории нарушался бы. Фейнман показал, что если мы введем в теорию понятия опережающих и запаздывающих волн, то те величины, которые могли бы вызвать нарушение причинности, очень аккуратно сократятся. Таким образом, антивещество необходимо для сохранения причинности.

Метки:
Предыдущий: Про обиды и не только...
Следующий: Особенности национального часть 98